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1 Executive Summary

In this report, we describe the accomplishments of the high-level adaptive

signal processing (H-LASP) project, carried out by a team of researchers from

the University of Massachusetts at Amherst and Boston University during

the period from February 1989 to September 1989. High-level adaptive sig-

nal processing (H-LASP) involves the integration of artificial intelligence and

signal processing in an interpretation system and makes use of a paradigm

that allocates processing resources and adjusts parameters of the low-level

processing in accordance with the evolving high-level interpretations of the

signal-generating environment. The goal of the project reported here was

to evaluate bow the H-LASP paradigm applies to a realistic task: real-time

sound classification. We have built a testbed for this application and found

that with some modifications and a number of refinements, the H-LASP

paradigm can be successfully used for the development of signal interpreta-

tion systems.
In high-level adaptive signal processing, the integration of high and low

level processing is achieved through a problem-solving paradigm that involves

three phases: discrepancy detection. diagnosis, and signal re-processing through
control parameter adjustment. Discrepancy detection is carried out by com-

paring the features of the signal processing outputs with features expected on

the basis of tie evolving scenario interpretation and with a-priori knowledge

about the signal-generating environment. This is followed by a diagnostic

reasoning process that makes significant use of the underlying Fourier theory
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of the signal processing system to isolate a subset of system parameters whose
settings were likely to have caused the observed discrepancies. Finally, the
signal processing resources are reallocated by appropriately adjusting system
parameters in order t,, rc-prccess the input signal with the aim of removing
the observed discrepancies. This paradigm was established in our 1 revious
research on an acoustic localization problem where we had found that expert
human signal processors use this type of reasoning in manually reallocating
the signal processing resources through parameter adjustment. The need for
resource allocation for the low-level processing components arises because of
two factors. The model variety factor is that the signal processing resources
(which are always finite) have to deal with an infinite variety of signal classes
whose signal processing requirements are often in conflict with each other.
By adjusting the parameters of an algorithm it can be made to deal with dif-
ferent classes of signals. The second factor that leads to the need for resource
allocation is the real-time performance factor. In a real-time situation, there
is not always enough time to do all the signal processing the system would
ideally carry out. In such cases, focus-of-attention decisions have to be made
about the use of the signal processing resources within the available time
frame.

For the project described in this report, the goal was to evaluate and
improve the H-LASP paradigm for a practical sound classification applica-
tion. We selected the real-time sound classification problem for this purpose
because it offers two major advantages: (1) it shares many low-level and high-
level processing requirements with other signal interpretation problems such
as radar signal interpretation and (2) the acoustic signal database is readily
available in our university laboratories for testbed experiments. The specific
sound classification problem arises in the context of real-time interpretation
of acoustic signals received by a system (robot, if you will) stationed in a
household environment. This means that the various sounds being received
by the system have to be classified in terms of the sources from which these
sounds originate. In the household environment, we are interested in sources
such as telephones, vacuum cleaners, babies, speech, footsteps, doorbells etc.
The problem is made particularly complicated (thereby requiring Artificial
intelligence techniques at the higher levels) because several sources may occur
simultaneously and they may have overlapping frequency spectra.

The achievements of our project may be divided into five major categories:
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" Incorporation of the diagnostic reasoning process into the sound clas-
sification testbed along with refinements in that process to deal with
the more sophisticated theory underlying the new application.

" Formulation and implementation of a practical approach to discrepancy
detection for the sound classification task.

Implementation in the testbed of a sophisticated database using the
Generic Blackboard (GB13) system. The design of the database with-
in a blackboard framew *k was found to ease the development of the
processing components of tiie H-LASP paradigm in the form of inde-
pendent knowledge sources.

" Design of the control component of the testbed through adaptati, i

of a framework developed at the University of Massachusetts for the
control of interpretation through analysis of the sources of uncertainty
associated with the various evidence gathering mechanisms.

" Design of the control component of the testbed to ensure real-time in-
vocation of the high and low-level knowledge source- while maintaining
the integrity of the high level interpretations to within the goals of the
system.

Within its limited eight-month duration, the project was successful in
developing a testbed that includes a blackboard database with knowledge
sources for signal processing, signalre- processing, discrepancy detection, and
diagnosis. Although the parameter adjustment and system control compo-
nents were fully designed, further work is needed to complete the imple-
mentation of the parameter adjustment knowledge sources and the control
component of the system. Completion of these components will permit us
to thoroughly evaluate the performance of a fully integrated H-LASP system
for a practical real-time signal interpretation application.

2 Ancillary Activities

2.1 Publications

1). 1. Gallestegui et. a]. Implementing a Blackboard-based Sound Classi-



fication System: A Case Study. Proceedings of the Blackboard Work-
shop at IJCAI 89. Detroit, MI. August 1989.

2). F. Klassner et. al. A Computer Program for the Symbolic Processing
of Sound Spectra. Submitted to the 1990 International Conference on

Acoustics, Speech, and Signal Processing.

2.2 Presentations

Hamid Nawab. High-Level Adaptive Signal Processing. Biomedical Engi-
neering Graduate Seminar. Boston University. April 1989.

Victor Lesser. High-Level Adaptive Signal Processing. Fifth Annual Work-
shop of the Al Consortium. August 1989.

3 Introduction

The long-term goal of our research is the establishment of a systematic frame-
work for the integration of artificial intelligence concepts and techniques into
complex signal processing systems in order to make their behavior more
adaptive to the high-level characteristics of the tignal-generating environ-
ment. This is in contrast to most present-day complex signal processing
systems, where if there is any artificial intelligence, it usually comes after
the signal processing has been completed [1,23. Whereas signal processing
is most often a real-time activity, the interpretation of the outputs of such
signal processing is either over-simplified because of real-time constraints or
it is not carried out in real-time. In either case, it has been considered un-
realistic for the higher-level processing to affect the way the real-time signal
processing is carried out. However, continuing advances in hardware and
artificial intelligence technology have now made it practical to consider the
design or systems in which the higher-level processing is sophisticated enough
and fast enough to influence the real-time use of signa processing resources.

The goal of the H-LASP project was to refine the H-LASP paradigm of
discrepancy detection, diagnosis, and signal re-processing through parameter
adjustment in the context of a real-time signal processing and interpretation
application. The acoustic localization research had focused on the nature of



the reasoning performed by expt rts wliie they were determining how t,, ad-

just tire signal processing parameters. but that res larch had not considered

the problem of how such a system .%ould form expectations about what is

likely to happen in the signal-generating environment so that this information

mav be used for discrepancy detection when compared to the actual signal

processing outputs. In the H-LASP project, we have studied the probleti of

discrepancy detection and formulated a variety of solutions., described inI this

v-'port. Another goal of the IL- LASP project was to test the applicability of

the diagnostic reasoning process that we had formulated in the acoustic 1,o-

calization research to the sound classification problem. We were successful in

incorporating the diagnostic reasoning process into the sound classification

testbed and we were able to make further refinements in how the process

deals with the more sophisticated signal processing theory underlying the

nicw appincatio. )ii:urther details are includedl in the section on diagnostic

i 'his retip rt. A third objective of our project was to iirt her
i l the qtuaiitative reasonig aspects of the [I-LASP paradigm. Because

,Ae svrtem has to deal with various amounts of uncertainties and errCr in

the data it handles, it is necessarv to reason with qualitative specifications

of many of the quantities. In particular, during this project we came to the
conclusion that an important enhancement to the H-LASP paradigm is to

include a control Ftrategy framework that controls the system's resources in
accordance with the importance of the uncertainties in the interpreted data..

For this purpose, we adopted a framework '3j developed at the tUniversitv
of Massachusetts for the control of interpretation through analysis of the
sources of uncertainty associated with the various evidence gathering mech-
anisms. As the H-LASP paradigm evolvt:d into a m, :e complex framework,

we also found the need for more attention to be given to the representation

of data and knowledge contained in the system. We opted for a blackboard

framework which has the advantage of dividing the database into as nianv

levels of abstraction as needed and to separate the development of knowledge
sources in accordance with the levels at which they operated. In the testbed.
we used the Generic Blackboard System (GB13) '41 as the shell for developing

the specific application blackboard. Details of the blackboard architecture
ani the implementation issues we faced during the development are includ-
ed in the report. In integrating knowledge sources with the blackboard, we

also had to incorporate into the overal! system design considerations arising
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from the real-time nature of the sound classification application. Although
our testbed cannot operate in real-time because of hardware limitations, the

design of the processiaig activity is such that with appropriate hardware.

the system can operate in real-time. A discussion of the considerations for

real-time processing is included in the report.

The remainder of the report is organized as follows. In section 4, we give

the background of how previous work on acoustic localization led to the for-

mulation of the H-LASP paradigm. The sound classification problem in the

context of which our H-LASP testbed was developed is described in section

5. This is followed in section 6 with a description of the signal processing

resources utilized in our sound classification testbed. In sections 7-11, we

provide details of the various issues encoultered during the project regard-

ing the design of the blackboard database, discrepancy detection, diagnosis,

resource allocation and parameter adjustment, and real-time operation.

4 Background

Prior to the project described in this report, our own work in the area of

acoustic localization [51 indicated the importance of tight. integration be-
tween artificial intelligence and signal processing. We concent.'ated on signal

processing systems that have an underlying mathematical theory, largely in

the Fourier frequency domain. Such systems often have a large number of

parameters that need to be adjusted in accordance with certain high-level

characteristics of the signal-generating environment. In our acoustic local-

ization apptication, the signal-generating environment consisted of aircraft

flyby s, recorded on acoustic .,'icrophones. Typically. such systems have

their parameter settings fixed for the "average scenario." Since the acous

tic characteristics of various aircraft differ from each other and since the

number of aircraft present (and their relative locations) wit.hin the range of

the microphornes is highly variable, the fixed parameter settings are not ap-

pr,'priate in all situations. For example, when two aircraft are within the

range of the microphones, whether or not the signals can be used to localize

and classify each of the aircraft depends to a large extent on the temp,,ral

and spatial frequency spectra of tLe signals generated by the two aircrafl.

It is often the case that the temporal spectra of the two aircraft overlap t,,



a certain exten'.. Therefore it is necessary for tile signal processing system
to focus on the non-overlapping frequency regions in order to differentiate
between the two aircraft. The spatial frequency information received at the

microphones is highly d(.,-ndent on the relative locations of the two aircraft

at each instant. In certain situations, it becomes difficult to distinguish the
directionality of the received signals unless the sign,'l processing has a-priori

knowledge or an expectation about the temporal frequency characteristics of
the individual aircraf'. rhis a-pri r, knowledge may then be used to tailor

the spatial proce silig for the purpose of extracting directional information.
We L -e, therefore, the importance of coniroding the parameters of the signal

processing systemi esponse to a higher-level nterpretation or expectation
of the signal-generaung environment.

In light of our experience with the acoustic localization problem, the

pro ject described in this report was formulated with the aim of further de-
,('loping the concept of high- ievti adaptive signal processing on the basis
1; paradigm %hose major components are Discrepancy-Detection. Diagl'o-
-,s. and 5iWnal-Reprocessing with Parameter Ad4ustment. For the acoustic

!o'ali7ation problem, we had found that human experts adjusted the sig-
nal processing resources by searching for discrepancies betweeni features of

the actual signal processing outputs and features expected on the basis of
a-priori knowledge about the signal generating environment (we refer to this

as discrepaticy detection). This was followed by a reasoning process that
made significant use of the underlying Fourier theory of the signal processing

,vstei to isolate a subset of system parameters whose settings were likely to

have caused the observed discrepancies (this constitutes the diagnosis part of
the paradigm). Finally, the isolated parameters are adjusted with the aim of

remo-ing the observed discrepancies (this is the parameter adjustment part
of the [I,-LASP piradigm).

The acoustic localization project helped us to formulate the discrepan-

cv detection. diagnosis, and parameter-adjustment mechanisms for signal

re-processing as the basis of a high-level adaptive signal processing system
design. To demonstrate the concepts involved in our system design, in the

next section we present an example to illustrate how such a system operates

in a particular situation.



5 Demonstration of Concept

In this section, we present an example of how the II-LASP paradigm is

used to carry out the processing required for the interpretation of a signal

that is a linear combination of signals from different sources with different

characteristics in time and frequency. This type of situation often arise!
in the context of signal classification problems. The details of the H-LASP

sound classification testbed that carries out such processing are given in later

sections.
Let us consider a twelve-second acoustic signal S that we wish to process

in Order to determine te time-varying frequency content of the component

signals that are due to different sources. In figure 1, we show the actual

tiime-frequency characteristics of the signal S. The signal contains contribu-

tions due to four sources, S1, S2, S3, and S4. Source S1 is a low-frequency

monochromatic signal that lasts for the entire duration of the 12-second sig-

nal S. Source S2 gives rise to a frequency-modulated monochromatic signal
that lasts approximately from the first second to the ninth second. Source S3
contains two harmonics lasting from approximately the sixth second to the

twelfth second. Note that the two components of S3 have an abrupt change
in frequency during the ninth second. Source S4 contains five harmonics

which begin shortly after the ninth second and last for approximately two

seconds. li our testbed. the signal data to be processed arrives in two-second

intervals demarcated by the dashed vertical lines in figure 1.
When the first two-second frame of signal-data undergoes front-end short-

time Fourier transform (STFT) signal processing 'to deternine its time

,hependent frequency content, the result obtained is shown in figure 2. In

particular, note that while the frequency content due to S1 is captured.
there is n,) contribution due to S2. The testbed front-end signal processing

also c)nsists of time-domain (TI)) processing to measure the energy and the

zer(, crossing rate ii the waveform. The results of the TD processing are used
to check for consistency with the STFT results. In the case of the results

for lie first frame, the testbed finds a significant difference in the energy

r'eastirernient from the ID process and the energy in the STFT output. This

:SF1 pr,,ces-ing includes peak detection which uses an energy threshold to reject
peaks wh,,se energies arc lower than the threshold.



type of discrepancy is referred to as a data-data discrepancy since it results

from comparing the output data of two different signal processing algorithms

applied to the same underlying signal. The existence of this discrepancy
triggers a Diagnosis knowledge-source in the testbed. This knowledge source
is used to hypothesize the cause for the discrepancy. In this situation, the

Diagnosis knowledge source that we have designed correctly hypothesizes
that the energy discrepancy is due to the fact that the energy threshold used
for detecting peak tracks in the STFT was too high. Conequently, the system

decides to decrease the threshold bv a factor of 1/2 and re-process the signal
in the first frame.

The result of the first signal re-processing on the first frame is shown in
figure 3. In this case, we observe that although the frequency track due to
source S2 has been detected, there are some additional short tracks in the
STIT' output. The higher level interpretation knowledge sources attempt

',, find a consistent explanation for those short tracks and fail to find any
'.1ch explanations. This is referred to as a data-interpretation discrepancy.
Fle )iaiosis knowledge source is triggered. It determines that the short
'noise" tracks may be eliminted by raising the peak detection threshold ill
the STF'T processing in such a way that only the two highest energy tracks
are detected. The consequent second round of signal re-processing results
in the output shown in Figure 4. The higher level interpretation knowledge
sources are able to classify the frequency track S1 as being due to a specific
target type A. On the other hand, the track due to S2 is classified as be-
longing to a class of targets rather than a specific target. This is because
the observed track for S2 is determined to potentially belong to a variety of

different target types. To remove some of the other possibilities, a search
is conducted for specific frequency tracks that would have to be present in
the first frame along with the observed track. These might be low energy

tracks, but energy thresholding is not needed in this case because the fre-
quency tracks are searched for in the specific frequency regions as dictated
by the correspondiig target models. The third round of signal re-processin
thus involves a search for specific frequency tracks in frame 1. However. no

such frequency tracks are found, as indicated in Figure 5. Now the remain-
ing uncertainty about the identity of the target corresponding to S2 can be
resolved only by waiting for more waveform data to arrive.

Since it is essential to continue tracking the frequency content due to 52 in
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the second frame, the Global parameter Adjustment knowledge source in the

testbed decides to use for the front-end signal processing of the second frame

the signal processing control parameter values that were used in the second

round of signal re-processing of the first frame. The results, illustrated in

figure 6, for the front-end signal processing in the second frame are found to

be sufficient to uniquely classify S2 as belonging to a target of a a specific

type B. The model for that target as stored in the system's knowledge base,
indicates that the target has a periodic frequency modulation. The system

thus forms an "expectation" for the future evolution of S2. These expecta-

tions are matched when the results from the front-end processing of the third

frame are obtained (see Figure 7).
The result after the front-end signal processing of the fourth frame is

shown in Figure 8. A new track is obtained in the lower frequency region.

TD analysis of the waveform in that frequency region (obtained through

bandpass filtering) reveals that the zero-crossing rate is not compatible with

a monochromatic source. This data-data discrepancy results in the appli-

cation of the Diagnosis knowledge source, which hypothesizes that there
is a frequency-resolution problem in that frequency band. The signal re-

processing planner responds by suggesting that the frequency resolution of

the STFT be increased by increasing the value of the STFT window-length

control parameter and decreasing the peak detection energy threshold. The

consequent signal re-processing result for the fourth frame is shown in Figure

9. Note that now the two tracks due to S3 (see Figure 1) have been resolved.

On the other hand, part of the S2 track is missing because of the decreased

time resolution when the STFT window length is increased. However, the

system uses the results of the fronnt-end signal processing of the fourth frame

to conclude that S2 is still present. Also the interpretation knowledge sources

associate S3 with a target class C, with uncertainty due to the fact that the

entire temporal data for S3 has not yet been receieved.
The result of front-end signal processing for frame 5 is shown in Figure 10.

Once again a data-data discrepancy indicates a frequency resolution problem.

After signal re-processing, the result is shown in figure 11. Note that the extra

harmonics of S4 are now detected, although time-resolution problems cause

the frequency modulated track of S3 to be missed. However, that information

is available to the system from the results of front-end signal processing for

frame 5. There is now enough information to classify S3. However, there is

11



not enough information to classify S4. That uncertainty is resolved after the
front-end signal processing in frame 6. At that point the entire 12 second

signal has been successfully interpreted.
The above example illustrates the kind of interpretation that takes place

in the H-LASP testbed in the context of sound understanding. The next
section presents some background on the sound understanding testbed. It

is followed by sections that describe various architectural aspects of the H-

LASP testbed.
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6 Sound Classification Problem

To further refine the H-LASP paradigm, we picked a real-time sound clas-
sification problem which offers two major advantages: (1) it shares many

low-level and high -level processing requirements with many other signal in-
terpretation problems such as radar signal interpretation and (2) the acoustic
signal database is readily available in our university laboratories for testbed
experiments.

The sound classification problem for which our testbed is designed aris-
es in the context of real-time interpretation of acoustic signals received by a
system (robot, if you will) stationed in a household environment. This means
that the various sounds being received by the system have to be classified in
terms of the sources from which these sounds originate. In the household en-
vironment, we are interested in sources such as telephones, vacuum cleaners,
babies, speech, footsteps, doorbells etc. Such sounds may be simultaneous
both in time and frequency.

The goal of the sound classification system is to associate sound sources
with portions of the acoustic waveform received by the system. The real-time
requirement imposed on the system is that sources should be associated with
portions of the waveform within a time frame that is appropriate to the goals
of the overall system. For example, if the overall system is to respond to the
ring of a telephone, it is necessary that the telephone ring be classified in
a time frame that allows appropriate action to be taken (such as answering
the telephone). Although our testbed is not designed to take such actions, it
is supplied with appropriate knowledge about the time frame within which
various types of sources have to be classified. There is furthermore an internal
objective of an H-LASP system which also forces the classification to be done
as quickly as possible: the classification of sounds is used to adapt the real-
time signal processing. Finally another real-time constraint is imposed by the
fact that any practical system can hold only a finite amount of data. Thus,

if the sound classification is allowed to significantly lag behind the rate at
which the signal information is being received, the system will be forced to

lose data.
The complexity of the sound classification problem largely arises from

the fact that at any given time multiple sources of sound may be present in

the environment. Therefore, the signals from each of these sources cverlap
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in time. Furthermore, in most cases there is significant overlap in their

frequency content as well. The problem is further complicated because of
the variability over time in the temporal and frequency characteristics of the

signals received from just one source. For example, the sound of a vacuum
cleaner has different characteristics depending on whether it is stationary,

being pushed, or being pulled. Finally, the presence of noise in the received
signals makes the problem that much harder.

To classify sounds, a system must search in both the time and frequency

domai for chacteristics that help to identify particular sources and to discern

between overlapping sources (such as when a telephone rings while a vacuum

cleaner is being used in the background). There are many signal processing
strategies that are available for transforming waveform data into various
time and frequency domain representations where the search for appropriate
features can be conducted. The search for these features and the construction

of source hypotheses by combining such features and comparing these against

knowledge about sound sources is the high-level processing component of the

sound classification problem.
A practical sound classification system has a finite amount of signal pro-

cessing resources. However, there is a large variety of sound sources which
require their own individually tailored signal processing strategies to ensure
detection of important features in the time and frequency domains. A prac-
tical sound classification system must therefore adapt its signal processing

resources in accordance with its latest interpretation of the sound generating
environment -- a task that clearly calls for high-level adaptive signal iprocess-

ing.
To classify sounds, a system must possess different types of knowledge

regarding sound sources. This includes knowledge about the physics of

soUnd propagation, knowledge about the characteristics of sounds emanating

from different sources (including the variability in such characteristics) and

knowledge about the type of signal processing appropriate for each type of
source. There is an abundance of such knowledge in the physical acoustics
and psycho-acoustics literature.
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7 Signal Processing for Sound Classification

In this section, we describe the signal processing resources utilized in the
sound classification testbed for our project. These resources fall into three

major categories: (1) Time Domain Analysis, (2) STFT analysis and (3)
Filterbank Analysis.

In time-domain analysis, a time-domain waveform is analyzed for proper-
ties such as power, zero-crossing density, zero crossing spac;ig, and waveform
envelope frequency. Estimates of the waveform power are formed by aver-

aging the energy in the digitized samples 'sampling rate in our system is 10
KHz) of the waveform over short intervals of time. The number of samples
in a waveform segment used for estimating power can be varied to be as s-
mall or as large as lesired. Zero crossing.; are detected by an algorithm that
searches for sign changes between consecutive waveform samples. The den-
sity is computed by calculating the number of zero-crossings in a waveform
segment and dividing by the duration of the segment. The length of the seg-
ment used for this purpose is once again an adjustable parameter. For any
given segment, another time domain subsytem produces the time difference
between consecutive zero crossings as a function of time. From these zero-
crossing spacings, the signal processing system calculates a measure of the
uniformity of the zero-crossing spacings. Finally, the time-domain analysis
also includes a non-linear filtering process that estimates the envelope of a
waveform segment and from it calculates the frequency associated with that
envelope.

In STFT (short-time Fourier transform) analysis, ilte system multiplies a
waveform segment with a shaping wir'dow and takes the Fourier transform of
the result using the FFT algorithm. Peaks in the resulting spectrum are then
detected (the specific criterion used for peak detection has several adjustable
parameters). Spectral peaks from consecutive (and usually partially over-
lapping) waveform segments are then compared. Using a decision criterion
which also has several adjustable parameters, the system decides whether a

peak belongs to a peak-track contiruing from a previous segment or whether
the peak might be the beginning of a new peak-track or whether it is just a
spurious peak. Thus, the final output of the STFT analysis is in the form of
peak tracks in the combined time-frequency domain.

Filterbank analysis is used in our testbed to separate the waveform into
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components that fall into different (although possibly overlapping) frequen-
cy bands. This allows the system to focus on frequency bands that are

expected or kimwn to hvc high sigial-to n-ie ratio. It should be noted
that each of the filters in the filterbank have adjustable center frequencies
and bandwidths. The output of each filter is a time-domain waveform to

which time-domain analysis or STFT analysis or both can be applied. The
filterbank in our testbed has a total of 4 filters.

8 Blackboard Database

In interpreting source information from the acoustic waveform, it is necessary

to consider certain intermediate information levels. Our initial system design
requires six information levels:

Segment Level: There are a variety of signal processing techniques that
can be applied to the acoustic waveform to extract various types of in-
formation. In our system, we use short-time Fourier transform (STFT)

analysis, time domain (TD) analysis, and filterbank (FB) analysis.
These techniques are applied to waveform segments of various lengths.
It is thus necessary for the sound classification system to keep track

of the segments from which the higher levels of information have been
extracted. This is all the more important because our system design

often requires some of the waveform data to be reanalyzed in light of
the higher-level information gathered with respect to that segment of

the data.

9 Peak Level: At this level, we store information about the frequency
content found in the various waveform segments. This information

takes the form of peaks that have frequency locations, bandwidths,
power and some shape characteristics.

e Track Level: At this level, we represent the evolution in time of the
peaks found at the lower level. Peaks found in neighboring segments
are considered to belong to the same track if parameters of those peaks
are close enough according to known criteria for allowable dynamics in

the tracks for everyday sound sources.

27



" Microstream Level: To each acoustic source in the environment, there
correspond one or more tracks. A micro-stream is a single track be-
longing tu a particula. suafc, and is further identificd iii terms of tuhrcc
sub-regions: attack phase, steady phase, and decay phase. Each of
these sub-regions have a variety of parameters associated with them in
order to gain specific information about the microstream.

" Stream Level: . The sound from a single source typically consists of
several micro-streams that are synchronized with each other. A group
of synchronized micro-streams is referred to as a stream. An example
of a stream would be a ring, such as that from a telephone, which
typically has two dominant microstreams at two different frequencies.

" Source Level: At this level, sources are explicitly identified with the
streams found at the lower level.

Objects at the various information levels are supported by objects at
lower levels and explained by objects at higher levels. Our design of the
system requires the sources of uncertainty to be explicitly associated 'With
the supports and explanations for any of the objects. The control for the
problem-solving is based on the uncertainties that the system determines to
be most important to resolve at any particular time.

There are a variety of knowledge sources (KS's) for creating, verifying,
and deleting hypotheses. The knowledge sources required by our system
design use one or more of the following types of knowledge: signal processing,
physical-acoustics, psycho-acoustics, and acoustic sources knowledge. We
have not yet implemented any of the knowledge sources completely. We have
instead worked with simulated KS's, with particular attention paid to their
time-behavior in order to be able to use our testbed for experimentation witb
the real-time requirements for the processing.

Most of our implementation focus has been on the blackboard database.
This section describes the implementation decisions we made with regard to:
the representation of hypotheses at the various information levels, the use of
links to connect related hypotheses, and the storage of information in those
links regarding the uncertainty in the relationship between hypotheses.

In the GBB framework, every hypothesis is represented by a unit type.
At the beginning of our project, we defined the following unit types:
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" Waveform hypothesis. The waveform data is the input data for our
system. Initially, we had one unit for every [time, power] pair in the
waveform. Since that resulted in a very large pmiiber of :inits and

since none of the signal processing algorithms required each pair to be
enumerated individually we decided to view the entire waveform as just
one unit.

* Peak hypothesis. We wanted to have five different levels of abstrac-
tion for a peak hypothesis. At first, we defined five different unit types
for the peak hypothesis, all of them linked together. But later we re-
alized that we could define just one unit for the peak hypothesis ard
place it in five different spaces such that each space allows access to

only those parts of the hypothesis that correspond to a particular ab-

straction level.

" Track hypothesis. A track hypothesis consists of the list of peaks
that comprise the track.

Each peak hypothesis is determined by applying a signal processing KS to

a segment of the waveform. It was during the implementation process that we

realized that to preserve the information about the correspondence between
peaks and segments, we had to establish an intermediate information level
between the input data and the peak level. We called it the Segment Level.

9 Segment hypothesis. A segment represents waveform data in a time

interval. Since the waveform data is going to be analyzed by three
different KSs and the intervals these KSs use are not necessarily related,
we defined three different kinds of segments: one for the STFT KS, one
for the TD KS and one for the FB KS.

8.1 Blackboards and Spaces.

* We decided to have three different spaces in tihe segment-level, be-

cause although we have only one segment unit type, when a segment

hypothesis is created, it is created for a particular type of KS. Thus.
that type of knowledge source needs to search only among the units

designated to its corresponding space.
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" Every peak hypothesis is stored in one of five spaces. These represent
the levels of abstraction for a peak hypothesis. The differences between
these spaces are the dimensions. That is, the parameters we can use to
retrieve a unit vary according to the space we are in.

" We have a separate control blackboard, because we want to have

control units, which contain control plans, and we do not want those

units to be stored with the data.

It should be noted that this hierarchy among the blackboards and spaces
is used only because of efficiency. If all the units were stored in the same

space, every time we look for a unit, we would have to search though all of

them. So, it is better to keep a structure of this type.
In our application, a hypothesis can not be represented by a single unit

because we do not get the final hypothesis in one step. To represent the
notion of the evolution of a hypothesis, we use the concept of an extension
of a hypothesis. A hypothesis has an extension when we get some new

information that changes it, or simply makes it more accurate. Examples of

this are:

* With a peak hypothesis. Suppose we get some information from the

STFT KS. We create a peak hypothesis with this information. After a
while, we get more information about that peak from the TD KS. This
is not new data, it simply makes the information in the peak hypothesis

more accurate. This is when we create a new extension ,)r the peak.

" With a track hypothesis. We find that two peaks could belong to the

same track (could support it) and so we create a track hypothesis.

Later, we find that another peak could belong to that track, Loo. So
we create a new extension for the track hypothesis, supported by this

peak.

We decided to have two different unit types to represent a hypothesis:

" hypothesis unit type

" extension unit type
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For eveiy Lypothesis we have one hypothesis unit type and as many ex-

tension unit types as needed.
We can also have multiple extensions, which represent alternative ways

of interpreting the available information (with uncertainty). Furthermore
hypotheses may support or explain other hypotheses but with a certain de-
gree of uncertainty. Hypotheses that are related this way are connected by
links. In our system, we wanted the links to explicitly store the sources of
uncertainty associated with them. Since our version of GBB did not support
links with properties, we had to implement our own links.

We thus have many units and links to represent a single hypothesis and

we found that most times we are not going to use all of them. The question
arose as to whether we should store all the units associated with a single
hypothesis in a space. Usually, when searching through the blackboard, we
only care about the last extensions of a hypothesis. Thus, only the latest
extension of a hypothesis is kept in a space (making it retrievable through its
parameters), while the intermediate extensions are only indirectly accessible
(they are on the blackboard, linked to the latest extension, but they are not

in any space).
We have found the main advantage of GBB for our application to be the

flexibility it offers in making changes as the design of our system evolves. At
the beginning we did not know exactly what we needed and we started with
an initial blackboard structure. As we were defining the system, we found
we needed to add new blackboards or spaces or that we needed to change
the dimensions of a unit. With GBB, this was just a matter of changing
definitions and recompiling. Here is an example of such a modification in our
system:

1. At the beginning we defined only one space to store all the segment
units. Later, we found that as we were going to have segments for
three different KSs it could be useful to have the segments in three
different spaces: one with the segments for the STFT KS, one with the
segments for the TD KS and another one with the segments for the FB
KS. We also wanted to add a new slot-dimension to the segment units.
To make all these changes we only had to change the the segment-level
space into a blackboard, define three new spaces in this blackboard.
and change the segment unit definition. GBB automatically took care
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of the rest (changes in retrieval functions, and so on) upon compilation.

Two difficulties we had with GBB related to links and compilation time.

1. We needed links with properties. In our version of GBB, links were

just simple pointers. We therefore had to define our own links outside

GBB.

2. It takes a long time to compile the definitions, particularly the unit

definitions.

9 Discrepancy Detection

A major accomplishment of our project was the design of a specific discrep-

ancy detection strategy for the sound classification testbed. Previous work

on the H-LASP paradigm had largely ignored the specifics of how discrep-

ancy detection would be accomplished in an actual system. Besides being

useful for the implementation of the testbed, our design of the discrepan-

cy detection strategy also resulted in a general framework for viewing the

discrepancy detection process for any H-LASP application. In this section,

we describe this general framework and illustrate it with examples from the

sound classification testbed.

In the most general sense, discrepancy detection in H-LASP is concerned

with comparing features of the signal processing outputs with expectations

about those features based on the evolving scenario interpretation and a-

priori knowledge about the application domain. In our work on the sound

classification testbed, we have found that it is convenient to divide discrep-

ancy detection into three basic categories of discrepancies: subsystem - sub-

system discrepancies, subsystem-expectation discrepancies, and expectation

simulation discrepancies. We describe each of these categories below.

Subsystem-subsystem discrepancies are discrepancies found between the

outputs of different signal processing subsystems. For example, time-domain

analysis may indicate the presence of a source at a certain frequency but the

STFT analysis may not show the presence of a spectral peak track at that

frequency. A number of different reasons, depending upon the parameter

settings of the subsystems, may account for such a discrepancy. One possi-

bility is that the STFT analysis may have the energy threshold (below which
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it ignores spectral peaks) set too high. Another reason might be that the

analysis segment used by the STFT analysis is too short to allow sufficient
frequency resolution to pick up the peak at that particular frequency. A
third reason could be that the parameters that determine the specific crite-
rion for associating peaks with particular tracks is not appropriate for the
characteristics of the particular frequency peaks under consideration. Yet
another possibility is that there really is not a source at that frequency but
rather the time-domain analysis (which mostly operates under a single source
assumption) gives a frequency estimate that is a hybrid produced due to the
presence of sources at more than one frequency. Which particular reason
applies in a specific case is determined by the diagnostic reasoning process.

Subsystem-expectation discrepancies are discrepancies found between sig-

nal processing outputs and expectations about those outputs based upon the

high level scenario interpretations. For example, suppose that the system
has recognized that a telephone is ringing. If a couple of rings have already
taken place, the system (using its knowledge about the ringing of telephones)
can predict when the next ring should take place. If the signal processing
system does not produce the required features at the predicted time, this dis-
crepancy will have to be resolved either by gathering further evidence that
the telephone has stopped ringing or by checking if the signal processing

parameters had not been appropriately set (this may happen if in the mean-

time another sound source had appeared in the environment and the signal
processing resources had been refocused on that source).

Expectation-Simulation discrepancies are discrepancies between the sys-
tem's expectations about what is going to happen in the signal- generating
scenario at some future time and what features the signal processing outputs
will have at that time (as determined by simulating the actions of the signal

processing under the predicted conditions). For example, consider the situ-
ation where the system has recognized that a telephone is ringing. It might
then be reasonable for the system to expect that somebody is going to answer

the telephone. That would lead to an expectation that the sound of a human
voice will be detected in the near future. At this point, the system can run a

simulation that predicts what kinds of features the signal processing system
(with its current parameter settings) would produce. If those features are
not considered suitable for adequately recognizing human speech, the system

may decide to readjust the signal processing parameters appropriately. It
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should be noted that the simulation in our testbed is carried out using the
operators (that model distortions produced by the signal processing) used by
the diagnosis knowledge source.

The most frequently occuring discrepancies are of the subsystemn-subsystern
type. An important part of designing the procedures for detecting such dis-
crepancies is to make sure that such detection does not take place at too
fine a level. Because the signal processing operations involve various de-
grees of approximation, a certain amount of discrepancy is always present
between subsystem outputs at most given times. Although some of these
discrepancies may be important to resolve, many others do not require such
resolution. Since the system has to perform in real-time, it is necessary that
any combinatorial explosion in the detection of dicrepancies be avoided. The
discrepancy detection algorithms themselves have parameters that determine
their sensitivity to various types of discrepancies. In our system, these pa-
rameters are used to constrain the number of discrepancies generated at any
given time. To illustrate this idea, consider two situations involving the ring-
ing of a telephone: in one case there is little background noise while in the
other the backgroung noise is significant. In the noisy case, estimates of the
loudness of the telephone as produced by the STFT and the time-domain
analysis may differ considerably without there being a need to act upon that
discrepancy. However, in the less noisy case, even small discrepancies riiay
be considered a sufficient reason to explore whether or not another source
has appeared. In our research so far, the issue of controlling the sensitivi-
ty parameters of the discrepancy detection has been considered in the most
rudimentary ways. We feel that further research on this issue is called for in
future work.

10 Diagnosis

The task of the diagnosis subsystem in the H-LASP system is to generate a
simple but plausible explanation for discrepancies detected between an initial
signal state and a goal signal state. The initial signal state is derived from I he
output of an acoustic signal processing subsystem whose output is considered
to be a more accurate description of the signal environment: the goal state
is derived from the output of a signal processing subsystem whose output is
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considered to be a less accurate representation of the signal environment due
to improperly-tuned signal processing parameter settings.

The explanation is produced via a plan-and-verify strategy used in con-
junction with a signal abstraction hierarchy. The abstraction hierarchy both

suppresses signal information and also changes signal representation at var-
ous levels. The planning phase generates a candidate explanation by applying
the generic means-ends analysis of GPS to the initial and goal states at a
particular abstraction level, while the verify phase uses the entire abstrac-

tion hierarchy both to verify that the explanation satisfies the constraints of
even the lowest (i.e., most complex representation) signal abstraction level
and to notify the planning phase when to try applying GPS reasoning at a
lower level of abstraction. An explanation takes the form of a sequence of
distortion operators which maps the initial state into the goal state.

The plan-and-verify strategy begins with selecting the highest level of
abstraction (i.e., the simplest representation of signal states) as the level
at which to apply the GPS algorit!,n. This is done because by ignoring

as much detail as possible, the diagnosis system can postulate explanations
with as few ope!rators as possible. !n other words, the system works with
simplest explanations first. The diagnosis system uses two mechanisms to

prevent combinatorial explosion during the GPS search for operators to use
in constructing an explanatiot. First, no operator is allowed to appear more
than once in a particular plan. This follows from the fact that each operator
represents a single procesp in the signal processing system; once the distortion
process occurs at some point in the system, it remains in existence throughout
the rest of the processiag system and does not occur again.

rhie second mechanism for controlling GPS search is the use of an ordering
relationship among classes of signal states. The classes used for the aircraft
tracking application and those used for the robotic hearing application will
be described later. Each operator specifies the allowable classes of input and
output signal states. In an explanation, an operator cannot appear before
another operator whose input signal class precedes the operator's output
signal class. This considerably reduces the operator search space. but it
should be noted that operators whose input and output state classes are the
same can appear in any order with respect to each other.

Once( an explanation has been proposed. the verify phase of the diagnostic
strategy takes place. The abstraction level of the verification is the lowest one
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at which a descriptiO,, I " the in tial state is known. Verification procc(eds as a
degenerate -as(- ,, the GPS algorithm at te 'owest abstraction level, except
that no "real" oterator search is carried out- the ,lgorithm simply selects the
operators in a-cordance with the plan to be verilted. If verification succeeds.
the diagnosis !s,,stem returns the explanation. If verification fails, however,
the diagnosis -vstem attempts to "'patch" the e.,pla, ation depending on the
nature of the fVilure.

There are two types of explanation failures. In cue. the preconditions o'
an operator in the explanation are not satisfieu !), the output state of the
operator preceedir.g it. In this situation tht HIlgnosis system attempts to
find a sequence of opw--a ,ors explaining tht diicrepancy between the state
and the preconditions of the f ).d ,per: tor. This patch is constructed with
the GPS algorithm at the highest ibstraction level which permits reasoning
with the kind of signal representation at which the new discrepancy was
observed. In the second type of explanation failure the output state of an
operator does not match the qualitative description anticipated for it in the
original explanation. In this case the failed operator is removed from the
explanation and a "sub-explanation" is devised to replace its position in t1?
explanation. In both types of failures, if no local readjustment is possible.
the diagnostic system abandons the candidate explanation and starts from
the planning phase again to generate a new explanation, though at a lower
abstraction level th-An the one previously used for explanation generation.

10.1 Acoustic Localization Application

In a previous acoustic localization application 151, five abstraction levels were
used: direction, power, frequency, band, and Gaussian levels. At the direc-
tion level, each signal is associated with just one characteristic-i , direction in
the direction spectrum. Other characteistics are hidden at this level. At the
frequency level, signals are described not only in terms of direction spectra,
but also in terms of their maximum and minimum frequencies. The power
level represents signals in terns of their direction spectra and their net power.
At the band level, power and frequency representations are combined, while
the Gaussian level adds signal bandwidth information to the band .evel repre-
sentation. Six operators were actually implemented for the diagnosis system
in the aircraft tracking application, though thirteen operators had been spec-
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Figure 12: First Abstraction Hierarchy

ified. Consequently, the range of sophistication of explanations generated by
the system was limited during system testing. The system used the follow-
ing operator input/output state classifications, with their precedence order
as listed: propagation, continuous-temporal, discrete-temporal, continuous-
spatial, discrete-temporal, continuous-spatial, and discrete-spatial. Propa-
gation states represent plane-wave signals propagating through the atmo-
sphere. Continuous-temporal states represent one-dimensional analog sig-
nals. and discrete-temporal states represent one-dimensional digital signal-
s. Continuous-spatial states represent two-dimensional analog wavenumber
spectra, and finally, discrete-spatial states represent digitized wavenumber

spectra.

10.2 Adapting the Diagnosis System to a New Do-
main

This subsection describes the changes that were made to the diagnosis system
in order to apply it to the sound classification problem. Specifically, we
discuss the design of a new abstraction hierarchy, the specification of new
state classes, and the implementation of a new set of distortion operators.

In adapting the system to robotic hearing, we found it useful to character-
ize signals in terms of their prominent peaks in the frequency spectrum. An
early hierarchy that was developed to support this characterization appears

in Figure 1. Its levels, and their details of signal representations, were exactly
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Figure 13: Second Abstraction Hierarchy for Robotic Hearing

the same as the hierarchy used in the aircraft tracking problem, except that
the direction level was replaced by the number level. At this level signals were
represented by the number of prominent peaks in their frequency spectra. In
the course of testing the redesigned system, it was found that the number
level did not support the generation of any but the most trivial explanations
(e.g., only one operator). It was also found that the frequency-level represen-
tation of prominent peaks in terms of minimum and maXimum frequencies
was not a natural one for the problem domain. Many of the distortion op-
erators that were specified lent themselves more naturally to characterizing
peaks at the frequency level in terms of their center frequencies.

To make use of these experimental observations, a new hierarchy was de-
veloped. The names of the levels are peak-location, frequency, power, band.
and shoulder. Figure 2 illustrates their refinement hierarchy. The peak-
location level associates each prominent signal peak with just one character
istic: the location of the peak's center frequency in the frequency spectrum.
The power level includes the power of the signal measured at the peak's
center frequency along with information from the peak-location level. At
the frequency level however, peaks are characterized in terms of their center
frequency and their left- and right-shoulder frequencies. The band level com-
bines the frequency and power level representations. while the shoulder level
adds the measured signal powers of the frequencies at the peaks' shoulders
to the band level representation.

In the sound classification domain, the signals processed by the system are
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not spatially-oriented in nature; they are characterized in terms of time and
frequency. Hence, our diagnosis system's state classification scheme required

a few adjustments. In the new scheme, the four classes used by thc diagnosis
system to constrain operator search are propagation, continuous-temporal,

continuous- frequency, and discrete-frequency.

11 Control

The control component of high-level adaptive signal processing is required

to deal with uncertainties that arise due to a number of factors. To beg-in
with, the received signal from a source may be corrupted due to interfering

signals from other sources or noise. Secondly, many of the signal processing
algorithms use approximations to extract various signal features and thus in-
troduce uncertainties. Real-time considerations sometimes force approxima-
tions in the processing and sometimes they lead to certain kinds of processing
to be postponed or not to be applied at all, causing further uncertainties in
the data. The higher-level processing itself has real-time limitations and thus

a certain amount of focusing is inevitable in most situations. Thus, while

a source that is considered important by the system may be focused upon,

information about other sources may be neglected. Since a practical inter-
pretation system retains the lower levels of data for only a finite amount
of time, focusing can result in data from unclassified or partially classified

sources to be lost. The consideration of such factors led us to conclude that

management of uncertainty in the evidence gathered by the system has to

be an important component of an H-LASP system.
For the H-LASP testbed, we have adopted a control framework [Carver

developed at the University of Massachusetts. In this framework, interpre-
tation is modeled as a process of gathering evidence to manage uncertainty.

The key components of the approach are a specialized evidential represen-
tation system and a control planner with heuristic focusing. The evidential
representation scheme includes explicit, symbolic encodings of the sources
of uncertainty in the evidence for the hypotheses. This knowledge is used

by the control planner to identity and develop strategies for resolving the

uncertainty in the interpretations. Since multiple alternative strategies may
be able to satisfy goals, the control process can be seen to involve search.
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Heuristic focusing is applied in parallel with the planning process in order to
select the strategies to pursue and control the search. This framework aUows
the use of a flexible focusing scheme which can switch back and forth between
strategies depending on the nature of the developing plans and changes in
the domain.

The basic control loop in this framework is a goal-driven process. The
highest level goal in our sound classification task is to remove uncertainties
from the most recent scenario interpretation. This invokes a plan (stored in
a blackboard referred to as the control blackboard) called Remove Uncer-
tainties from Scenario Interpretation. In accordance with the basic control
plan formalism, this control plan specifies subgoals and the order (if any)
in which they are to be satisfied. In this case, there are two subgoals, to
be iterated over sequentially until all sources of uncertainty are removed or
the total time allocation for the process has been used. The first subgoal is
to find a sound-source hypothesis on the blackboard with uncertainty in its
classification. The second subgoal is to eliminate the sources of uncertainty
in a specified sound-source classification hypothesis.

The first subgoal, finding a source hypothesis with uncertainty in its clas-
sification, triggers a primitive plan. These kinds of plans represent action-
s which may be carried out by a Knowledge Source (KS). In this case, a

knowledge source is triggered that searches the sound-source level of the
blackboard for a sound-source hypothesis that has uncertainty. The KS us-
es a variety of criteria to decide which hypothesis to choose. It should be
noted that there will always be at least one hypothesis, namely silence, at
the source-hypothesis level. The types of uncertainties specified along with
source hypotheses include: no supporting stream-hypothesis, incomplete sup-
porting stream-hypothesis, uncertain supporting stream-hypothesis, and al-
ternative source hypothesis supported by same stream-hypothesis. The s-
elected source-hypothesis is then passed over to the plan for meeting the
second subgoal.

The second subgoal, to eliminate a source of uncertainty from the se-

lected source-hypothesis, then triggers a plan called Eliminate Sources of
Uncertainty. The control plan formalism includes the specification of in-
put variables. In this case the input variable will take on the value of the
selected hypothesis. The control plan formalism also includes output vari-
ables, whose values are bound to appropriate values and returned to the
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plan that called the current subplan. In our present case, there are no out-

put variables specified, thus no values are returned after the execution of the

subplan. This subplan contains two further subgoals. The first is to find
the sources of uncertainty (there may be more than one) associated with the
source hypothesis and the second is to eliminate a given source of uncertainty.

These subgoals are iterated sequentially until all the sources of uncertainty
have been dealt with. The heuristic focusing mechanism decides the order
in which the sources of uncertainty are attacked if there is more than one

source of uncertainty associated with a source. The sources of uncertain-
ty are found through a knowledge source. The second subgoal has a plan

consisting of several further subgoals including: to gather evidence for non-
existent stream-hypothesis, to gather further data about partially-supported

stream-hypothesis, to eliminate uncertainty in a stream-hypothesis, to gather

evidence to resolve the conflict between multiple source hypotheses supported
by the same stream-hypothesis. Which of these subgoals is pursued depends

on the type of uncertainty that is to be eliminated. The selected subgoal
then triggers a control plan. Sometimes, there are multiple plans available
for the same subgoal. The heuristic focusing mechanism is used to decide

which plan is used under the given circumstances.

The above process continues, where subgoals lead to plans and plans lead

to further subgoals until primitive plans are reached. The whole process

is guided by the heuristic focusing mechanism. In our case, the search for
uncertainties and efforts to resolve them can reach down to the lowest levels
in the blackboard, where even signal processing KS's may be triggered.

The signal processing KS's are invoked not only by the goal-driven process
described above but they are also triggered by a data driven or opportunis-

tic process that is limited in our testbed to the lowest three levels of the
blackboard. Thus as the signal data arrives in the system, it triggers knowl-
edges to create segment hypotheses, which in turn trigger knowledge sources

that create peak hypotheses, and these peak hypotheses trigger knowledge
sources that create track hypotheses. The hypotheses at the higher levels,
microstream, stream, and sound-source, are only created by the goal-driven

process.
Focusing heuristics repiesent meta-level knowledge relative to the knowl-

edge in the control plans. Wheras control plans embody problem solving
strategies for interpretation, focusing heuristics embody strategies for select-
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ing the appropriate problem solving strategies. The focusing heuristics with
particular control plans. There are several points at which focusing decisions
must be made so we partition the focusing knowledge into four different class-
es: variable, subgoal, matching, and updating. Variable focusing knowledge

is associated with each of the input variables of a control plan and is used to
select among competing bindings for a variable. Subgoal focusing knowledge
is used to select among multiple active subgoals for a plan instance. Match-
ing focusing knowledge is used to select among the multiple plans which are
applicable to satisfying a subgoal. Updating focusing knowledge is associated
with each subgoal of a control plan and is used to decide how to proceed
when a plan for satisfying the subgoal completes (i.e., succeeds or fails).

The focusing mechanism is also extended to make it possible for the

system to shift its focus between competing strategies in response to the

characteristics of the developing plans and factors such as data availability.
Focusing is extended by allowing variable and matching focus decisions to be:
absolute, postponed or preliminary. Absolute focusing heuristics simply select
a single path to be pursued - subject of course to potential plan failure (which
is handled by the updating process). A postponed focusing decision creates a
refocus form which specifies the paths to be pursued, the conditions for re
focusing, and a refocus handler. Refocus conditions are evaluated following
the execution of any action (only actions generate new knowledge). When
they are satisfied, the refocus handler is invoked and re-evaluates the choices
within the new context in order to eliminate the new foci. Preliminary focus

decisions are similar to postponed decisions except that refocusing involves
a re-examination of all the original alternatives as opposed to just those
that were initially focused upon. Preliminary and postponed focus decisions
control the system's backtracking since they effectively define the backtrack

points and the conditions under which the system backtracks.
The basic mechanisms of the control process described above have been

incorporated into our testbed. We are currently implementing the specific

control plans and focusing heuristics into the system.
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12 Resource Allocation

The parameter adjustment component of the H-LASP paradigm may be
viewed as a means for resource allocation. The need for resource allocation

for the low-level processing components arises because of two factors. The

first factor, the signal variety factor, is the enormous variety and conflicting
nature of the signal processing requirements of the input signals in most
signal interpretation applications, including sound classification. The signal

processing resources (which are always finite) have to deal with an infinite

variety of signal classes. A practical way of dealing with this problem is to
parameterize the signal processing algorithms. By adjusting the parameters
of an algorithm it can be made to deal with different classes of signals. The

second factor that leads to the need for resource allocation is the real-time
performance factor. In a real-time situation, there is not always enough time
to do all the signal processing the system would ideally carry out. In such

cases, focus-of-attention decisions have to be made about the use of the signal

processing resources within the limited time frame.
The signal variety factor for resource allocation arises because the require-

ments that any particular signal type imposes on the signal processing are
often in conflict with requirements of other signal categories. For example,

signals whose frequency content changes rapidly as a function of time require
STFT analysis whose segment length parameter is relatively small. On the

other hand, signals whose frequency domain characteristics are very detailed

need to have their STFT analysis done with a relatively large value for the
segment length parameter. Signals that have both rapidly varying frequen-
cy characteristics as well as fine frequency domain detail would require two

separate analyses; one with a short segment length and the other with a long
segment length. Another example of conflicting signal processing require-

ments can be seen in situations that involve the presence of multiple signals.

In such situations it becomes necessary to separate the contributions due
to individual signals. How signals are separated from each other depends on
the nature of the individual signals. Thus a signal processing system requires

some information about the nature of the individual signals in order to tailor
its processing for the purpose of separating signals. An alternative in this
case would be not to attempt to separate the signals at the signal-processing
stage, but rather to attempt separation of sound source characteristics at the
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higher levels of processing. A problem with such an approach is that if signal

separation is not accomplished at the lower levels, the interference between

signals (which is linear) usually leads to non-linear interactions between sig-

nal features at the higher levels. Such non-linear interactions are generally

more difficult to resolve.

To illustrate the real-time factor leading to the need for resource alloca-

tion, consider a situation where signals from two sources are being received

by the system. Furthermore, let us assume that the two signals have different

time-frequency characteristics and thus require different parameter settings

for the STFT analysis to be performed on them. If the real-time constraints

force the system to perform just one STFT analysis, it is forced to choose

between the two signals. This allocation of the STFT resource would have to

be based upon the importance attached to the classification of the individual

signals as well as previous progress made by the system in classifying the

signals. If such considerations do not lead to a clear choice, an alternative is

to time-slice the STFT analysis of the two signals. That is, the system goes

back and forth between the two signals, focusing on the STFT analysis of

each over disjoint time intervals.

13 Real-time Considerations

An important consideration in building the sound classification testbed has

been to ensure that the processing strategies can be applied under real-time

constraints. In this section, we discuss how the knowledge sources associ-

ated with the blackboard framework are designed to handle the real-time

requirements.

In deciding this, we realized that we had five different types of KSs de-

pending on how we could assign a processing time to them. These are:

" FIXED TIME knowledge sources. These are the ones that always

require the same amount of time and this time is known before the KS

is run.

" MAX-TIME knowledge sources. We do not know how long these

KSs are going to take until they have finished their work. But, because

of their characteristics we do know the maximum time they are going
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to take. (These have to search through the database, but this is a finite
search).

" AVG-TIME knowledge sources (average-time).

We do not know how long these KSs are going to take until they have
finished and we do not have a maximum time for them as they do a
heuristic search through the database. What we do have for these KS's
is an average of how long they take.

" APPROX-WITHIN-TIME knowledge sources. These KSs are
those that have a time restriction for its execution. Since they can not
spend as much time as they may need, a level of abstraction is selected
depending on how much time they have. In other words, if they have
very few time, they will work in a high level of abstraction because
in this level they will consider less data and so the processing will be
faster.

" RESTRICTED-TIME knowledge sources. These KSs have a
time restriction for their execution, but in this case no abstraction
is possible. So, these KSs will do as muh as they can in the time they
have. It is possible that they will not get any useful result within their
time restrictions.

14 Bibliography

1). L. Erman, F. Hayes-Roth, V. Lesser, and R. Reddy. The Hearsay II
speech understanding system: integrating knowledge to resolve uncer-
tainty. Computing Surveys, 12 June, 1980.

2). P. Nii, E. Feigenbaum, J. Anton, and A. Rockmore. Signal-to-symbol
transformation: HASP/SIAP case study. The AI Magazine, pp. 23-35,

Spring 1982.

3). N. Carver and V. Lesser. Planning for the Control of an Interpretation
System. COINS Technical Report 89-39. University of Massachusetts.

April 1989.

45



4). D. Corkill. GBB Reference Manual. COINS Technical Report 88-66.
University of Massachusetts. July 1988.

5). S.H. Nawab, V. Lesser, and E.E. Milios, "Conceptual Diagnosis of Signal

Processing Systems," IEEE Trans. Systems, Man, and Cybernetics,
Special Issue on Diagnostic Reasoning, May/Jun. 87.

46



MISSION

of

Rome Air Development Center
N N

e RADC plans and executes research, development, test and
Ni selected acquisition programs in support of Command, Control, N

Communications and Intelligence (C3I) activities. Technical and"N
engineering support within areas of competence is provided to

,N ESD Program Offices (POs) and other ESD elements to N
perform effective acquisition of C3I systems. The areas of
technical competence include communications, command and A

A control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic N
reliabilty / maintainabilitv and compatibiitV.


